package.json
The manifest file of a package. It contains all the package's metadata, including dependencies, title, author, et cetera. This is a standard preserved across all major Node.JS package managers, including pnpm.
engines
You can specify the version of Node and pnpm that your software works on:
{
"engines": {
"node": ">=10",
"pnpm": ">=3"
}
}
During local development, pnpm will always fail with an error message
if its version does not match the one specified in the engines
field.
Unless the user has set the engine-strict
config flag (see .npmrc), this
field is advisory only and will only produce warnings when your package is
installed as a dependency.
dependenciesMeta
Additional meta information used for dependencies declared inside dependencies
, optionalDependencies
, and devDependencies
.
dependenciesMeta.*.injected
If this is set to true
for a local dependency, the package will be hard linked to the virtual store (node_modules/.pnpm
) and symlinked from the virtual store to the modules directory.
If this is set to false
or not set for a local dependency, the package will be symlinked directly from its location in the workspace to the module directory.
For instance, the following package.json
in a workspace will create a symlink to button
in the node_modules
directory of card
:
{
"name": "card",
"dependencies": {
"button": "workspace:1.0.0"
}
}
But what if button
has react
in its peer dependencies? If all projects in the monorepo use the same version of react
, then no problem. But what if button
is required by card
that uses react@16
and form
with react@17
? Without using inject
, you'd have to choose a single version of react
and install it as dev dependency of button
. But using the injected
field you can inject button
to a package, and button
will be installed with the react
version of that package.
So this will be the package.json
of card
:
{
"name": "card",
"dependencies": {
"button": "workspace:1.0.0",
"react": "16"
},
"dependenciesMeta": {
"button": {
"injected": true
}
}
}
button
will be hard linked into the dependencies of card
, and react@16
will be symlinked to the dependencies of card/node_modules/button
.
And this will be the package.json
of form
:
{
"name": "form",
"dependencies": {
"button": "workspace:1.0.0",
"react": "17"
},
"dependenciesMeta": {
"button": {
"injected": true
}
}
}
button
will be hard linked into the dependencies of form
, and react@17
will be symlinked to the dependencies of form/node_modules/button
.
In contrast to normal dependencies, injected ones are not symlinked to the destination folder, so they are not updated automatically, e.g. after running the build script. To update the hard linked folder contents to the latest state of the dependency package folder, call pnpm i
again.
Note that the button
package must have any lifecycle script that runs on install in order for pnpm
to detect the changes and update it. For example, the package can be rebuilt on install: "prepare": "pnpm run build"
. Any script would work, even a simple unrelated command without side effects, like this: "prepare": "pnpm root"
.
peerDependenciesMeta
This field lists some extra information related to the dependencies listed in
the peerDependencies
field.
peerDependenciesMeta.*.optional
If this is set to true, the selected peer dependency will be marked as optional by the package manager. Therefore, the consumer omitting it will no longer be reported as an error.
For example:
{
"peerDependencies": {
"foo": "1"
},
"peerDependenciesMeta": {
"foo": {
"optional": true
},
"bar": {
"optional": true
}
}
}
Note that even though bar
was not specified in peerDependencies
, it is
marked as optional. pnpm will therefore assume that any version of bar is fine.
However, foo
is optional, but only to the required version specification.
publishConfig
It is possible to override some fields in the manifest before the package is packed. The following fields may be overridden:
To override a field, add the publish version of the field to publishConfig
.
For instance, the following package.json
:
{
"name": "foo",
"version": "1.0.0",
"main": "src/index.ts",
"publishConfig": {
"main": "lib/index.js",
"typings": "lib/index.d.ts"
}
}
Will be published as:
{
"name": "foo",
"version": "1.0.0",
"main": "lib/index.js",
"typings": "lib/index.d.ts"
}
publishConfig.executableFiles
By default, for portability reasons, no files except those listed in the bin field will be marked as executable in the resulting package archive. The executableFiles
field lets you declare additional fields that must have the executable flag (+x) set even if they aren't directly accessible through the bin field.
{
"publishConfig": {
"executableFiles": [
"./dist/shim.js"
]
}
}
publishConfig.directory
You also can use the field publishConfig.directory
to customize the published subdirectory relative to the current package.json
.
It is expected to have a modified version of the current package in the specified directory (usually using third party build tools).
In this example the
"dist"
folder must contain apackage.json
{
"name": "foo",
"version": "1.0.0",
"publishConfig": {
"directory": "dist"
}
}
publishConfig.linkDirectory
- Default: true
- Type: Boolean
When set to true
, the project will be symlinked from the publishConfig.directory
location during local development.
For example:
{
"name": "foo",
"version": "1.0.0",
"publishConfig": {
"directory": "dist"
"linkDirectory": true
}
}
pnpm.overrides
This field allows you to instruct pnpm to override any dependency in the dependency graph. This is useful to enforce all your packages to use a single version of a dependency, backport a fix, or replace a dependency with a fork.
Note that the overrides field can only be set at the root of the project.
An example of the "pnpm"."overrides"
field:
{
"pnpm": {
"overrides": {
"foo": "^1.0.0",
"quux": "npm:@myorg/quux@^1.0.0",
"bar@^2.1.0": "3.0.0",
"qar@1>zoo": "2"
}
}
}
You may specify the package the overriden dependency belongs to by
separating the package selector from the dependency selector with a ">", for
example qar@1>zoo
will only override the zoo
dependency of qar@1
, not for
any other dependencies.
An override may be defined as a reference to a direct dependency's spec.
This is achieved by prefixing the name of the dependency with a $
:
{
"dependencies": {
"foo": "^1.0.0"
},
"pnpm": {
"overrides": {
"foo": "$foo"
}
}
}
The referenced package does not need to match the overridden one:
{
"dependencies": {
"foo": "^1.0.0"
},
"pnpm": {
"overrides": {
"bar": "$foo"
}
}
}
pnpm.packageExtensions
The packageExtensions
fields offer a way to extend the existing package definitions with additional information. For example, if react-redux
should have react-dom
in its peerDependencies
but it has not, it is possible to patch react-redux
using packageExtensions
:
{
"pnpm": {
"packageExtensions": {
"react-redux": {
"peerDependencies": {
"react-dom": "*"
}
}
}
}
}
The keys in packageExtensions
are package names or package names and semver ranges, so it is possible to patch only some versions of a package:
{
"pnpm": {
"packageExtensions": {
"react-redux@1": {
"peerDependencies": {
"react-dom": "*"
}
}
}
}
}
The following fields may be extended using packageExtensions
: dependencies
, optionalDependencies
, peerDependencies
, and peerDependenciesMeta
.
A bigger example:
{
"pnpm": {
"packageExtensions": {
"express@1": {
"optionalDependencies": {
"typescript": "2"
}
},
"fork-ts-checker-webpack-plugin": {
"dependencies": {
"@babel/core": "1"
},
"peerDependencies": {
"eslint": ">= 6"
},
"peerDependenciesMeta": {
"eslint": {
"optional": true
}
}
}
}
}
}
Together with Yarn, we maintain a database of packageExtensions
to patch broken packages in the ecosystem.
If you use packageExtensions
, consider sending a PR upstream and contributing your extension to the @yarnpkg/extensions
database.
pnpm.peerDependencyRules
pnpm.peerDependencyRules.ignoreMissing
pnpm will not print warnings about missing peer dependencies from this list.
For instance, with the following configuration, pnpm will not print warnings if a dependency needs react
but react
is not installed:
{
"pnpm": {
"peerDependencyRules": {
"ignoreMissing": ["react"]
}
}
}
Package name patterns may also be used:
{
"pnpm": {
"peerDependencyRules": {
"ignoreMissing": ["@babel/*", "@eslint/*"]
}
}
}
pnpm.peerDependencyRules.allowedVersions
Unmet peer dependency warnings will not be printed for peer dependencies of the specified range.
For instance, if you have some dependencies that need react@16
but you know that they work fine with react@17
, then you may use the following configuration:
{
"pnpm": {
"peerDependencyRules": {
"allowedVersions": {
"react": "17"
}
}
}
}
This will tell pnpm that any dependency that has react in its peer dependencies should allow react
v17 to be installed.
It is also possible to suppress the warnings only for peer dependencies of specific packages. For instance, with the following configuration react
v17 will be only allowed when it is in the peer dependencies of the button
v2 package or in the dependencies of any card
package:
{
"pnpm": {
"peerDependencyRules": {
"allowedVersions": {
"button@2>react": "17",
"card>react": "17"
}
}
}
}
pnpm.peerDependencyRules.allowAny
allowAny
is an array of package name patterns, any peer dependency matching the pattern will be resolved from any version, regardless of the range specified in peerDependencies
. For instance:
{
"pnpm": {
"peerDependencyRules": {
"allowAny": ["@babel/*", "eslint"]
}
}
}
The above setting will mute any warnings about peer dependency version mismatches related to @babel/
packages or eslint
.
pnpm.neverBuiltDependencies
This field allows to ignore the builds of specific dependencies. The "preinstall", "install", and "postinstall" scripts of the listed packages will not be executed during installation.
An example of the "pnpm"."neverBuiltDependencies"
field:
{
"pnpm": {
"neverBuiltDependencies": ["fsevents", "level"]
}
}
pnpm.onlyBuiltDependencies
A list of package names that are allowed to be executed during installation. If this field exists, only the listed packages will be able to run install scripts.
Example:
{
"pnpm": {
"onlyBuiltDependencies": ["fsevents"]
}
}
pnpm.onlyBuiltDependenciesFile
Added in: v8.9.0
This configuration option allows users to specify a JSON file that lists the only packages permitted to run installation scripts during the pnpm install process. By using this, you can enhance security or ensure that only specific dependencies execute scripts during installation.
Example:
{
"dependencies": {
"@my-org/policy": "1.0.0"
},
"pnpm": {
"onlyBuiltDependenciesFile": "node_modules/@my-org/policy/onlyBuiltDependencies.json"
}
}